Get Up to Speed

Tutorials

1. Alarid-Escudero F, Krijkamp EM,  Enns EA, Yang A, Hunink MGM, Pechlivanoglou P, Jalal H. A Tutorial on Time-Dependent Cohort State-Transition Models in R using a Cost-Effectiveness Analysis Example. Med Decis Making. 2023;43(1):21-41. Read here. 

2. Alarid-Escudero F, Krijkamp EM, Enns EA, Yang A, Hunink MGM, Pechlivanoglou P, Jalal H. An Introductory Tutorial on Cohort State-Transition Models in R using a Cost-Effectiveness Analysis Example. Med Decis Making. 2023;43(1):3-20. Read here. 

3. Krijkamp EM, Alarid-Escudero F, Enns EA, Pechlivanoglou P, Hunink GM, Jalal H. A Multidimensional Array Representation of State-Transition Model Dynamics. Med Decis Making. 2020;40(2):242-248Read here.

4. Alarid-Escudero F, Krijkamp E, Pechlivanoglou P, Jalal H, Kao SYZ, Yang A, Enns EA. A need for change! A coding framework for improving transparency in decision modeling. PharmacoEcon. 2019;37(11):1329–1339. Read here.

5. Krijkamp E, Alarid-Escudero F, Enns EA, Jalal HJ, Hunink MG, Pechlivanoglou P. Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial. Med Decis Making. 2018;38(3):400-422. Read here.

6. Jalal HJ, Pechlivanoglou P, Krijkamp E, Alarid-Escudero F, Enns EA, Hunink MG.  An overview of R in Health Decision Sciences. Med Decis Making. 2017;37(7): 735-46. Read here.

Methodology Papers

  1. Alarid-Escudero F, Andrews JR, Goldhaber-Fiebert J. Effects of Mitigation and Control Policies in Realistic Epidemic Models Accounting for Household Transmission Dynamics. Med Decis Making. 2023 (Online First). Read here.
  2. Alarid-Escudero F, Knudsen AB, Ozik J, Collier N, Kuntz KM. Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models. Frontiers in Physiology. 2022;13:780917. Read here.
  3. Wolff HB, Qendri V, Kunst N, Alarid-Escudero F, Coupé VMH. Methods for communicating the impact of parameter uncertainty in a multiple strategies cost-effectiveness comparison. Med Decis Making. 2022;42(7):956-968. Read here.
  4. Jalal H, Trikalinos TA,  Alarid-Escudero F.  BayCANN: Streamlining Bayesian Calibration with Artificial Neural Network MetamodelingFrontiers in Physiology, 2021;12:662314. Read here.

  5. Jalal H, Burke DS. Hexamaps for Age–Period–Cohort Data Visualization and Implementation in R. Epidemiology, 2020. Read here.

  6. Alarid-Escudero F, Kuntz KMPotential Bias Associated with Modeling the Effectiveness of Healthcare Interventions in Reducing Mortality Using an Overall Hazard Ratio. PharmacoEcon, 2020;38(3):285-296. Read here.
  7. Alarid-Escudero F, Enns EA, Kuntz KM, Michaud TL, Jalal HJ. “Time Traveling Is Just Too Dangerous” But Some Methods Are Worth Revisiting: The Advantages of Expected Loss Curves Over Cost-Effectiveness Acceptability Curves and Frontier. Value Health. 2019;22(5):611-618. Read here.
  8. Jutkowitz E, Alarid-Escudero F, Kuntz KM, Jalal HJ. The Curve of Optimal Sample Size (COSS): A Graphical Representation of the Optimal Sample Size from a Value of Information Analysis. PharmacoEcon. 2019;37(7): 871-877. Read here.
  9. Alarid-Escudero F, Maclehose RF, Peralta Y, Kuntz KM, Enns EA. Non-identifiability in model calibration and implications for medical decision making. Med Decis Mak. 2018;38(7):810-821. Read here.
  10. Easterly C Alarid-Escudero F, Enns EA, Kulasingam S. Revisiting assumptions about age-based mixing representations in mathematical models of sexually transmitted infections. Vaccine. 2018;36(37):5572-5579. Read here.
  11. Jalal HJAlarid-Escudero F. A Gaussian Approximation Approach for Value of Information Analysis. Med Decis Making. 2018;38(2):174–88. Read here.
  12. Hollman C, Paulden M, Pechlivanoglou P, McCabe C. A Comparison of Four Software Programs for Implementing Decision Analytic Cost-Effectiveness Models. Pharmacoeconomics. Springer International Publishing; 2017;35(8):817–30. Read here.
  13. Goldhaber-Fiebert JD, Jalal HJ. Some health states are better than others: using health state rank order to improve probabilistic analyses. Med Decis Making. 2016;36(8):927-40. Read here. 
  14. Enns EA, Cipriano LE, Simons CT, Kong CY. Identifying Best-Fitting Inputs in Health-Economic Model Calibration: A Pareto Frontier Approach. Med Decis Making. 2015;35(2):170–82. Read here.
  15. Jalal HJ, Dowd B, Sainfort F, Kuntz KM. Linear regression metamodeling as a tool to summarize and present simulation model results. Med Decis Making. 2013;33(7):880–90. Read here.
  16. Enns EA, Brandeau ML. Inferring model parameters in network-based disease simulation. Health Care Manag Sci. 2011;14(2):174–88. Read here
Close Menu